Core Model derived scales and the Approachable Free Subset Property

Dominik Adolf
Rutgers University

Pittsburgh, February the 22nd, 2020

Powerset of Singular Cardinals

Let λ be a singular strong limit cardinal. What is 2^{λ} ? (From now on $\lambda=\aleph_{\omega}$).
Shelah proved $2^{\aleph_{\omega}}<\aleph_{\omega_{4}}$. Shelah also hypothesized $2^{\aleph_{\omega}}<\aleph_{\omega_{1}}$. (PCF conjecture (simplified)).

Powerset of Singular Cardinals

Let λ be a singular strong limit cardinal. What is 2^{λ} ? (From now on $\lambda=\aleph_{\omega}$).
Shelah proved $2^{\aleph_{\omega}}<\aleph_{\omega_{4}}$. Shelah also hypothesized $2^{\aleph_{\omega}}<\aleph_{\omega_{1}}$. (PCF conjecture (simplified)).

Theorem (Shelah)

If \aleph_{ω} is a strong limit but $2^{\aleph_{\omega}}>\aleph_{\omega_{1}}$, then the approachable free subset property holds at \aleph_{ω}. $\left(\operatorname{AFSP}\left(\aleph_{\omega}\right)\right)$

Approachable Sets, Free Subsets

Definition

Let $X \prec(H(\theta) ; \in, \ldots), \kappa<\theta$ an uncountable regular cardinal. X is called internally approachable of length κ, iff there exists $\left\langle X_{\alpha}: \alpha<\kappa\right\rangle$ s.t.

■ $X=\bigcup_{\alpha<\kappa} X_{\alpha}$,
■ $X_{\alpha} \prec(H(\theta) ; \in, \ldots)$ and $\operatorname{Card}\left(X_{\alpha}\right)<\kappa$ for all $\alpha<\kappa$,

- $\left\langle X_{\beta}: \beta<\alpha\right\rangle \in X_{\alpha}$ for all $\alpha<\kappa$.

Definition

Let $X \prec(H(\theta) ; \in, \ldots),\left\{\kappa_{\alpha}: \alpha<\lambda\right\} \subset \theta$ is free over X iff $\chi_{X}\left(\kappa_{\beta}\right) \notin \mathrm{Sk}^{(H(\theta) ; \in, \ldots)}\left(X \cup\left\{\chi_{X}\left(\kappa_{\alpha}\right): \alpha \in a\right\}\right)$ for all finite $a \subset \lambda$ and $\beta \in \lambda \backslash$ a.

Approachable Free Subset Property

Definition

$\operatorname{AFSP}\left(\aleph_{\omega}\right)$ iff for all internally approachable $X \prec(H(\theta) ; \in, \ldots)$ $\left(\theta \geq\left(2^{\aleph_{\omega}}\right)^{+}\right)$with $\operatorname{PCF}\left(\left\{\aleph_{n}: n<\omega\right\}\right) \subset X$ of length $\kappa<\aleph_{\omega}$ there exists $A \subset\left\{\aleph_{n}: n<\omega\right\}$ infinite that is free over X.

Approachable Free Subset Property

Definition

$\operatorname{AFSP}\left(\aleph_{\omega}\right)$ iff for all internally approachable $X \prec(H(\theta) ; \in, \ldots)$ $\left(\theta \geq\left(2^{\aleph_{\omega}}\right)^{+}\right)$with $\operatorname{PCF}\left(\left\{\aleph_{n}: n<\omega\right\}\right) \subset X$ of length $\kappa<\aleph_{\omega}$ there exists $A \subset\left\{\aleph_{n}: n<\omega\right\}$ infinite that is free over X.

Corollary

$\operatorname{AFSP}\left(\aleph_{\omega}\right)$ implies the existence of an inner model M such that for all $\alpha<\aleph_{\omega}$ there is $\beta<\aleph_{\omega}$ with $\circ^{M}(\beta) \geq \alpha$. In fact, there is $\left\langle U_{\gamma}: \gamma<\alpha\right\rangle$ a sequence of normal measures on β with $U_{\delta} \in \operatorname{Ult}\left(M ; U_{\gamma}\right)$ for $\delta<\gamma<\alpha$.

PCF simplified

Basic objects are functions $f \in \prod_{n<\omega} \aleph_{n}$ ordered by $f<\jmath g$ iff $\{n<\omega \mid g(n) \leq f(n)\} \in J$ where J is an ideal on ω. J will usually take the form of $I_{<\omega}^{A}:=\{b \subset \omega \mid \exists m \forall n>m: n \notin A\}$. Have $\prod_{n<\omega} \aleph_{n} / I_{<\omega}^{A} \cong \prod_{n \notin A} \aleph_{n} / I_{<\omega}=\prod_{n \in \omega \backslash A} \aleph_{n} / I_{<\omega}$.

Definition

A sequence $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is a scale (on $\prod_{n<\omega} \aleph_{n} / J$) iff it is $<J$-increasing and cofinal, i.e. for all $g \in \prod_{n<\omega} \aleph_{n}$ there is $\alpha<\lambda$ with $g<\jmath f_{\alpha}$.

Tree-like Scales

Definition (Pereira)

A scale $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is tree-like iff $f_{\alpha}(m)=f_{\beta}(m) \Rightarrow f_{\alpha}(n)=f_{\beta}(n)$ for all $\alpha<\beta<\lambda$ and $n<m<\omega$.

Definition

A scale $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is continuous iff f_{α} is an exact upper bound for $\left\langle f_{\beta}: \beta<\alpha\right\rangle$, i.e. $f \leq \jmath g$ for any other upper bound g, for all limit ordinals $\alpha<\lambda$.

Tree-like Scales

Definition (Pereira)

A scale $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is tree-like iff $f_{\alpha}(m)=f_{\beta}(m) \Rightarrow f_{\alpha}(n)=f_{\beta}(n)$ for all $\alpha<\beta<\lambda$ and $n<m<\omega$.

Definition

A scale $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is continuous iff f_{α} is an exact upper bound for $\left\langle f_{\beta}: \beta<\alpha\right\rangle$, i.e. $f \leq \jmath g$ for any other upper bound g, for all limit ordinals $\alpha<\lambda$.

By work of Pereira and later Cummings we do know that continuous tree-like scales can co-exist with strong large cardinal notions, I_{0}-cardinals and supercompact cardinals respectively. We will show that they exist in V assuming anti-large cardinal assumption.

Anti-AFSP scales

Lemma

Let $\kappa<\aleph_{\omega}$ be regular uncountable. Let $X \prec(H(\theta) ; \in ; \ldots)$ be internally approachable of length κ. Let $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle \in X$ be a scale. Then $\left\langle\chi_{x}\left(\aleph_{n}\right): n<\omega\right\rangle$ is an exact upper bound for $\left\langle f_{\alpha}: \alpha<\chi x(\lambda)\right\rangle$.

Lemma (Pereira)

Let $A \subset \omega$ be infinite. Assume $\prod_{n \in A} \aleph_{n} / I_{<\omega}$ carries a continuous tree-like scale, then for a relative club of internally approachable $X \prec(H(\theta) ; \in ; \ldots), A$ is not free over X.

Mice

Let $(*)_{\lambda}$ be the statement "for all $\alpha<\lambda$ there exists $\beta<\lambda$ with $\mathrm{o}(\beta) \geq \alpha^{\prime \prime}$. What would a canonical model of $(*)_{\lambda} M$ look like?

Mice

Let $(*)_{\lambda}$ be the statement "for all $\alpha<\lambda$ there exists $\beta<\lambda$ with $\mathrm{o}(\beta) \geq \alpha^{\prime \prime}$. What would a canonical model of $(*)_{\lambda} M$ look like?

- $M=L[\vec{E}]$,

Mice

Let $(*)_{\lambda}$ be the statement "for all $\alpha<\lambda$ there exists $\beta<\lambda$ with $\circ(\beta) \geq \alpha^{\prime \prime}$. What would a canonical model of $(*)_{\lambda} M$ look like?

- $M=L[\vec{E}]$,
- E_{α} is a partial extender of length α for all $\alpha \in \operatorname{dom}(\vec{E})$,

Mice

Let $(*)_{\lambda}$ be the statement "for all $\alpha<\lambda$ there exists $\beta<\lambda$ with $\circ(\beta) \geq \alpha^{\prime \prime}$. What would a canonical model of $(*)_{\lambda} M$ look like?

- $M=L[\vec{E}]$,
- E_{α} is a partial extender of length α for all $\alpha \in \operatorname{dom}(\vec{E})$,
- $\operatorname{Ult}\left(M ; E_{\alpha}\right) \| \alpha=M$ and $\alpha \notin \operatorname{dom}\left(i_{E}(\vec{E})\right)$.

Mice

Let $(*)_{\lambda}$ be the statement "for all $\alpha<\lambda$ there exists $\beta<\lambda$ with $\circ(\beta) \geq \alpha^{\prime \prime}$. What would a canonical model of $(*)_{\lambda} M$ look like?

- $M=L[\vec{E}]$,
- E_{α} is a partial extender of length α for all $\alpha \in \operatorname{dom}(\vec{E})$,
- $\operatorname{Ult}\left(M ; E_{\alpha}\right) \| \alpha=M$ and $\alpha \notin \operatorname{dom}\left(i_{E}(\vec{E})\right)$.

Such a model (with some additional properties) is called a premouse.

Iterations

Let M be a premouse. An iteration on M is a sequence $\left\langle M_{\alpha}, i_{\alpha, \beta}: \alpha \leq \beta \leq \gamma\right\rangle$ of premice with (partial) embeddings between them, starting with M, produced by iterating the following operations:

- Applying an extender $E \in M_{\alpha}$ to some $M_{\beta}(\beta \leq \alpha)$ (for our purposes $\beta=\alpha$ always);
- truncating to an inital segment (but only finitely often);
- taking direct limits (at limit stages).

Iterations

Let M be a premouse. An iteration on M is a sequence $\left\langle M_{\alpha}, i_{\alpha, \beta}: \alpha \leq \beta \leq \gamma\right\rangle$ of premice with (partial) embeddings between them, starting with M, produced by iterating the following operations:

- Applying an extender $E \in M_{\alpha}$ to some $M_{\beta}(\beta \leq \alpha)$ (for our purposes $\beta=\alpha$ always);
- truncating to an inital segment (but only finitely often);

■ taking direct limits (at limit stages).

Lemma (Comparison)

Let M, N be iterable premice (mice) then there exist normal iterations \mathcal{I} on M with last model M^{*} and \mathcal{J} on N with last model N^{*} that one of the following holds:
(i) $M^{*} \unlhd N^{*}$ and \mathcal{I} does not truncate;
(ii) $N^{*} \unlhd M^{*}$ and \mathcal{J} does not truncate.

The core model

The core model K is the minimal maximal mouse (not the actual definition!) if such exists. K exists if there is no mouse satisfying $(*)_{\lambda}$.

The core model

The core model K is the minimal maximal mouse (not the actual definition!) if such exists. K exists if there is no mouse satisfying $(*)_{\lambda}$.
K has the following properties (among others):

- $\operatorname{cof}\left(\left(\alpha^{+}\right)^{K}\right) \geq \kappa$ for all $\alpha \geq \aleph_{2} ;$
- if $\operatorname{cof}(\alpha)<\operatorname{Card}(\alpha)$ but $\alpha \geq \aleph_{2}$ is regular in K then, in fact, $\mathrm{o}^{K}(\alpha) \geq \nu$ where $\operatorname{cof}(\alpha)=\omega \cdot \nu$;
■ $K=K^{V[G]}$ for any set generic extension.

The covering argument

Let $\alpha \geq \aleph_{2}$. Assume $\operatorname{cof}\left(\left(\alpha^{+}\right)^{K}\right)<\alpha$. Let $X \prec(H(\theta) ; \in, \ldots)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $\left(\alpha^{+}\right)^{K}$. Let $\sigma_{X}: H_{X} \simeq X$ and $K_{X}:=\sigma_{X}^{-1 "}[K]$.

The covering argument

Let $\alpha \geq \aleph_{2}$. Assume $\operatorname{cof}\left(\left(\alpha^{+}\right)^{K}\right)<\alpha$. Let $X \prec(H(\theta) ; \in, \ldots)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $\left(\alpha^{+}\right)^{K}$. Let $\sigma_{X}: H_{X} \simeq X$ and $K_{X}:=\sigma_{X}^{-1 "}[K]$.
Facts:
■ In the co-iteration between K and K_{X}, K_{X} does not move;

The covering argument

Let $\alpha \geq \aleph_{2}$. Assume $\operatorname{cof}\left(\left(\alpha^{+}\right)^{K}\right)<\alpha$. Let $X \prec(H(\theta) ; \in, \ldots)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $\left(\alpha^{+}\right)^{K}$. Let $\sigma_{X}: H_{X} \simeq X$ and $K_{X}:=\sigma_{X}^{-1 "}[K]$.
Facts:
■ In the co-iteration between K and K_{X}, K_{X} does not move;

- K must truncate, in fact, $\left(\operatorname{crit}\left(\sigma_{X}\right)^{+}\right)^{K_{X}}<\left(\operatorname{crit}\left(\sigma_{X}\right)^{+}\right)^{K}$;

The covering argument

Let $\alpha \geq \aleph_{2}$. Assume $\operatorname{cof}\left(\left(\alpha^{+}\right)^{K}\right)<\alpha$. Let $X \prec(H(\theta) ; \in, \ldots)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $\left(\alpha^{+}\right)^{K}$. Let $\sigma_{X}: H_{X} \simeq X$ and $K_{X}:=\sigma_{X}^{-1 "}[K]$.
Facts:
■ In the co-iteration between K and K_{X}, K_{X} does not move;

- K must truncate, in fact, $\left(\operatorname{crit}\left(\sigma_{X}\right)^{+}\right)^{K_{X}}<\left(\operatorname{crit}\left(\sigma_{X}\right)^{+}\right)^{K}$;

■ let β be the least point in the iteration s.t. the next critical point is $\geq \sigma_{X}^{-1}(\alpha)$; (if it exists o.w. the last model) let $M:=\operatorname{Ult}\left(M_{\beta} ; \sigma_{X} \upharpoonright K_{X} \|\left(\sigma_{X}^{-1}\left(\left(\alpha^{+}\right)^{K}\right)\right)\right)$, then:

The covering argument

Let $\alpha \geq \aleph_{2}$. Assume $\operatorname{cof}\left(\left(\alpha^{+}\right)^{K}\right)<\alpha$. Let $X \prec(H(\theta) ; \in, \ldots)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $\left(\alpha^{+}\right)^{K}$. Let $\sigma_{X}: H_{X} \simeq X$ and $K_{X}:=\sigma_{X}^{-1 "}[K]$.
Facts:
■ In the co-iteration between K and K_{X}, K_{X} does not move;

- K must truncate, in fact, $\left(\operatorname{crit}\left(\sigma_{X}\right)^{+}\right)^{K_{X}}<\left(\operatorname{crit}\left(\sigma_{X}\right)^{+}\right)^{K}$;

■ let β be the least point in the iteration s.t. the next critical point is $\geq \sigma_{X}^{-1}(\alpha)$; (if it exists o.w. the last model) let $M:=\operatorname{Ult}\left(M_{\beta} ; \sigma_{X} \upharpoonright K_{X} \|\left(\sigma_{X}^{-1}\left(\left(\alpha^{+}\right)^{K}\right)\right)\right)$, then:

- M is a mouse, so $M \in K$,
- $\left(\alpha^{+}\right)^{K}$ is a cardinal in M,
- M defines a surjection from α onto $\left(\alpha^{+}\right)^{K}$.

The Theorem

Theorem

Assume $2^{\aleph_{0}}<\aleph_{\omega}$ and that there is no class size mouse of $(*)_{\omega_{\omega}}$.
(a) Let $A:=\left\{n<\omega \mid \exists \alpha: \aleph_{n}=\left(\alpha^{+}\right)^{K} \vee\left(\aleph_{n}^{+}\right)^{K}<\aleph_{n+1}\right\}$. Then $\prod \aleph_{n} / I_{<\omega}$ carries a tree-like scale that is continuous on $n \in A$ $\operatorname{cof}(>\omega)$.
(b) Let $B:=\left\{n<\omega \mid \forall \alpha<\aleph_{n}:\left(\alpha^{+}\right)^{K}<\aleph_{n} \wedge\left(\aleph_{n}^{+}\right)=\aleph_{n+1}\right\}$.

Then $\prod_{n \in B} \aleph_{n} / I_{<\omega}$ carries an essentially tree-like scale that is continuous on $\operatorname{cof}(>\kappa)$, some $\kappa<\aleph_{\omega}$.

Proof.

- W.I.o.g. assume $\aleph_{n}=\left(\kappa_{n}^{+}\right)^{K}$ for $n \in A$. Let $C_{n}:=\left\{\alpha<\kappa^{+}|K| \alpha \prec K \mid \aleph_{n}\right\} . C_{n}$ is a club.

A sketch

Proof.

- W.I.o.g. assume $\aleph_{n}=\left(\kappa_{n}^{+}\right)^{K}$ for $n \in A$. Let $C_{n}:=\left\{\alpha<\kappa^{+}|K| \alpha \prec K \mid \aleph_{n}\right\} . C_{n}$ is a club.
- For $\alpha \in C_{n}$ let M_{α}^{n} be the least level of K for which a (canonical) partial surjection $g_{\alpha}^{n}: \kappa_{n} \rightarrow \alpha$ is k_{α}^{n}-definable.
(0-definable is just $\boldsymbol{\Sigma}_{1}$-definable.)

A sketch

Proof.

- W.I.o.g. assume $\aleph_{n}=\left(\kappa_{n}^{+}\right)^{K}$ for $n \in A$. Let $C_{n}:=\left\{\alpha<\kappa^{+}|K| \alpha \prec K \mid \aleph_{n}\right\} . C_{n}$ is a club.
- For $\alpha \in C_{n}$ let M_{α}^{n} be the least level of K for which a (canonical) partial surjection $g_{\alpha}^{n}: \kappa_{n} \rightarrow \alpha$ is k_{α}^{n}-definable. (0-definable is just $\boldsymbol{\Sigma}_{1}$-definable.)
- For $\alpha \in C_{m}$ there exists at most one $\beta \in C_{n}$ such that there exists a $\left(k_{\alpha}^{m}=\right) k_{\beta}^{n}$-embedding $\sigma_{\beta, \alpha}: M_{\beta}^{n} \rightarrow M_{\alpha}^{m}$ moving certain parameters correctly. (A 0-embedding is Σ_{1}-elementary.)

A sketch

Proof.

- Idea: Let X be good. Then for all $n^{*} \leq n<m \in A$ we have a $k_{\chi x\left(\aleph_{n}\right)}^{n}$-embedding from $M_{\chi x\left(\aleph_{n}\right)}^{n}$ into $M_{\chi x\left(\aleph_{m}\right)}^{m}$.

A sketch

Proof.

- Idea: Let X be good. Then for all $n^{*} \leq n<m \in A$ we have a $k_{\chi x\left(\aleph_{n}\right)}^{n}$-embedding from $M_{\chi x\left(\aleph_{n}\right)}^{n}$ into $M_{\chi x\left(\aleph_{m}\right)}^{m}$.
- Let $\left\langle M_{\alpha}, i_{\alpha, \beta}: \alpha \leq \beta \leq \gamma\right\rangle$ be the induced iteration on K. Let β_{n} be the least point in the iteration such that the next point is $\geq \sigma_{X}^{-1}\left(\kappa_{n}\right)$ (if it exists, o.w. $\beta_{n}=\gamma$).

A sketch

Proof.

- Idea: Let X be good. Then for all $n^{*} \leq n<m \in A$ we have a $k_{\chi x\left(\aleph_{n}\right)}^{n}$-embedding from $M_{\chi x\left(\aleph_{n}\right)}^{n}$ into $M_{\chi x\left(\aleph_{m}\right)}^{m}$.
- Let $\left\langle M_{\alpha}, i_{\alpha, \beta}: \alpha \leq \beta \leq \gamma\right\rangle$ be the induced iteration on K. Let β_{n} be the least point in the iteration such that the next point is $\geq \sigma_{x}^{-1}\left(\kappa_{n}\right)$ (if it exists, o.w. $\beta_{n}=\gamma$).
- Have then $M_{\chi x\left(\aleph_{n}\right)}^{n}=\operatorname{Ult}\left(M_{\beta_{n}} ; \sigma_{X} \upharpoonright K_{X} \| \sigma_{X}^{-1}\left(\aleph_{n}\right)\right)$. Let $\varphi_{m, n}: M_{\chi x\left(\aleph_{n}\right)}^{n} \rightarrow M_{\chi x\left(\aleph_{m}\right)}^{m},[a, f]_{\sigma_{X}} \mapsto\left[a, i_{\beta_{n}, \beta_{m}}(f)\right]_{\sigma_{X}}$.

Limitations

Theorem (Gitik)

Let κ be a regular cardinal, and let E be an extender on κ of length κ^{++}. Then there exists a forcing extension $V[G]$ with a sequence $\left\langle\kappa_{n}: n<\omega\right\rangle$ such that $\prod_{n<\omega} \kappa_{n}^{++} / I_{<\omega}$ does not carry an essentially tree-like continuous scale.

Limitations

Theorem (Gitik)

Let κ be a regular cardinal, and let E be an extender on κ of length κ^{++}. Then there exists a forcing extension $V[G]$ with a sequence $\left\langle\kappa_{n}: n<\omega\right\rangle$ such that $\prod_{n<\omega} \kappa_{n}^{++} / I_{<\omega}$ does not carry an essentially tree-like continuous scale.

Conjecture: Let M be a model of $(*)_{\lambda}$. Then there exists a forcing extension $M[G]$ with a sequence $\left\langle\kappa_{n}: n<\omega\right\rangle$ such that $\prod_{n<\omega} \kappa_{n} / I_{<\omega}$ does not carry a tree-like continuous scale.

Open Questions

Question

What is the consistency strength of the existence of a sequence $\left\langle\kappa_{n}: n<\omega\right\rangle$ consisting of core model successor cardinals such that $\prod \kappa_{n} / I_{<\omega}$ does not carry a continuous tree-like scale?

Question

Is it consistent for there to exist some singular strong limit λ such that for no $\left\langle\kappa_{n}: n<\omega\right\rangle$ cofinal in $\lambda, \prod_{n<\omega} \kappa_{n} / I_{<\omega}$ carries a tree-like continuous scale?

Question

Is it consistent for there to exist some singular strong limit λ and some $\left\langle\kappa_{n}: n<\lambda\right\rangle$ such that $\prod_{n<\omega} \kappa_{n} / I_{<\omega}$ carries a tree-like continuous scale and true cofinality of the product is λ^{++}?

References

[1] Saharon Shelah: PCF and infinite free subsets in an algebra. Archive for Mathematical Logic, vol 41, Pages 321-359.
[2] Luis Pereira: The PCF conjecture and large cardinals. JSL 73(2), Pages $647-688,2008$.
[3] James Cummings: Continuous tree-like scales. Central European Journal of Mathematics, vol 8, Pages 314-318.
[4] Moti Gitik: On a question of Pereira. Archive of Mathematical Logic, vol 47, Pages 53-64, 2008.
[5] Dominik Adolf and Omer Ben-Neria: untitled. In preparation.

