Core Model derived scales and the Approachable Free Subset Property

Dominik Adolf

Rutgers University

Pittsburgh, February the 22nd, 2020

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let λ be a singular strong limit cardinal. What is 2^{λ} ? (From now on $\lambda = \aleph_{\omega}$). Shelah proved $2^{\aleph_{\omega}} < \aleph_{\omega_4}$. Shelah also hypothesized $2^{\aleph_{\omega}} < \aleph_{\omega_1}$. (PCF conjecture (simplified)).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let λ be a singular strong limit cardinal. What is 2^{λ} ? (From now on $\lambda = \aleph_{\omega}$). Shelah proved $2^{\aleph_{\omega}} < \aleph_{\omega_4}$. Shelah also hypothesized $2^{\aleph_{\omega}} < \aleph_{\omega_1}$. (PCF conjecture (simplified)).

Theorem (Shelah)

If \aleph_{ω} is a strong limit but $2^{\aleph_{\omega}} > \aleph_{\omega_1}$, then the approachable free subset property holds at \aleph_{ω} . (AFSP(\aleph_{ω}))

Definition

Let $X \prec (H(\theta); \in, ...)$, $\kappa < \theta$ an uncountable regular cardinal. X is called internally approachable of length κ , iff there exists $\langle X_{\alpha} : \alpha < \kappa \rangle$ s.t.

Definition

Let $X \prec (H(\theta); \in, ...)$, $\{\kappa_{\alpha} : \alpha < \lambda\} \subset \theta$ is free over X iff $\chi_X(\kappa_{\beta}) \notin Sk^{(H(\theta); \in, ...)}(X \cup \{\chi_X(\kappa_{\alpha}) : \alpha \in a\})$ for all finite $a \subset \lambda$ and $\beta \in \lambda \backslash a$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

AFSP(\aleph_{ω}) iff for all internally approachable $X \prec (H(\theta); \in, ...)$ $(\theta \ge (2^{\aleph_{\omega}})^+)$ with PCF({ $\aleph_n : n < \omega$ }) $\subset X$ of length $\kappa < \aleph_{\omega}$ there exists $A \subset {\aleph_n : n < \omega}$ infinite that is free over X.

Definition

AFSP(\aleph_{ω}) iff for all internally approachable $X \prec (H(\theta); \in, ...)$ $(\theta \ge (2^{\aleph_{\omega}})^+)$ with PCF({ $\aleph_n : n < \omega$ }) $\subset X$ of length $\kappa < \aleph_{\omega}$ there exists $A \subset {\aleph_n : n < \omega}$ infinite that is free over X.

Corollary

AFSP(\aleph_{ω}) implies the existence of an inner model M such that for all $\alpha < \aleph_{\omega}$ there is $\beta < \aleph_{\omega}$ with $o^{M}(\beta) \ge \alpha$. In fact, there is $\langle U_{\gamma} : \gamma < \alpha \rangle$ a sequence of normal measures on β with $U_{\delta} \in Ult(M; U_{\gamma})$ for $\delta < \gamma < \alpha$.

Basic objects are functions $f \in \prod_{n < \omega} \aleph_n$ ordered by $f <_J g$ iff $\{n < \omega | g(n) \le f(n)\} \in J$ where J is an ideal on ω . J will usually take the form of $I_{<\omega}^A := \{b \subset \omega | \exists m \forall n > m : n \notin A\}$. Have $\prod_{n < \omega} \aleph_n / I_{<\omega}^A \cong \prod_{n \notin A} \aleph_n / I_{<\omega} = \prod_{n \in \omega \setminus A} \aleph_n / I_{<\omega}$.

Definition

A sequence $\langle f_{\alpha} : \alpha < \lambda \rangle$ is a scale (on $\prod_{n < \omega} \aleph_n / J$) iff it is $<_J$ -increasing and cofinal, i.e. for all $g \in \prod_{n < \omega} \aleph_n$ there is $\alpha < \lambda$ with $g <_J f_{\alpha}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition (Pereira)

A scale $\langle f_{\alpha} : \alpha < \lambda \rangle$ is tree-like iff $f_{\alpha}(m) = f_{\beta}(m) \Rightarrow f_{\alpha}(n) = f_{\beta}(n)$ for all $\alpha < \beta < \lambda$ and $n < m < \omega$.

Definition

A scale $\langle f_{\alpha} : \alpha < \lambda \rangle$ is continuous iff f_{α} is an exact upper bound for $\langle f_{\beta} : \beta < \alpha \rangle$, i.e. $f \leq_J g$ for any other upper bound g, for all limit ordinals $\alpha < \lambda$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition (Pereira)

A scale $\langle f_{\alpha} : \alpha < \lambda \rangle$ is tree-like iff $f_{\alpha}(m) = f_{\beta}(m) \Rightarrow f_{\alpha}(n) = f_{\beta}(n)$ for all $\alpha < \beta < \lambda$ and $n < m < \omega$.

Definition

A scale $\langle f_{\alpha} : \alpha < \lambda \rangle$ is continuous iff f_{α} is an exact upper bound for $\langle f_{\beta} : \beta < \alpha \rangle$, i.e. $f \leq_J g$ for any other upper bound g, for all limit ordinals $\alpha < \lambda$.

By work of Pereira and later Cummings we do know that continuous tree-like scales can co-exist with strong large cardinal notions, I_0 -cardinals and supercompact cardinals respectively. We will show that they exist in V assuming anti-large cardinal assumption.

Lemma

Let $\kappa < \aleph_{\omega}$ be regular uncountable. Let $X \prec (H(\theta); \in; ...)$ be internally approachable of length κ . Let $\langle f_{\alpha} : \alpha < \lambda \rangle \in X$ be a scale. Then $\langle \chi_X(\aleph_n) : n < \omega \rangle$ is an exact upper bound for $\langle f_{\alpha} : \alpha < \chi_X(\lambda) \rangle$.

Lemma (Pereira)

Let $A \subset \omega$ be infinite. Assume $\prod_{n \in A} \aleph_n / I_{<\omega}$ carries a continuous tree-like scale, then for a relative club of internally approachable $X \prec (H(\theta); \in; ...)$, A is not free over X.

Let $(*)_{\lambda}$ be the statement "for all $\alpha < \lambda$ there exists $\beta < \lambda$ with $o(\beta) \ge \alpha$ ". What would a canonical model of $(*)_{\lambda} M$ look like?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $(*)_{\lambda}$ be the statement "for all $\alpha < \lambda$ there exists $\beta < \lambda$ with $o(\beta) \ge \alpha$ ". What would a canonical model of $(*)_{\lambda} M$ look like? $M = L \left[\vec{E}\right]$,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let $(*)_{\lambda}$ be the statement "for all $\alpha < \lambda$ there exists $\beta < \lambda$ with $o(\beta) \ge \alpha$ ". What would a canonical model of $(*)_{\lambda}$ *M* look like? $M = L \begin{bmatrix} \vec{E} \end{bmatrix}$, E_{α} is a partial extender of length α for all $\alpha \in \operatorname{dom}(\vec{E})$,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $(*)_{\lambda}$ be the statement "for all $\alpha < \lambda$ there exists $\beta < \lambda$ with $o(\beta) \ge \alpha$ ". What would a canonical model of $(*)_{\lambda}$ *M* look like? **u** $M = L\left[\vec{E}\right]$, **u** E_{α} is a partial extender of length α for all $\alpha \in dom(\vec{E})$, **u** $Ult(M; E_{\alpha})||\alpha = M$ and $\alpha \notin dom(i_{E}(\vec{E}))$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Let $(*)_{\lambda}$ be the statement "for all $\alpha < \lambda$ there exists $\beta < \lambda$ with $o(\beta) \ge \alpha$ ". What would a canonical model of $(*)_{\lambda} M$ look like? • $M = L \begin{bmatrix} \vec{E} \end{bmatrix}$, • E_{α} is a partial extender of length α for all $\alpha \in \operatorname{dom}(\vec{E})$, • $\operatorname{Ult}(M; E_{\alpha}) || \alpha = M$ and $\alpha \notin \operatorname{dom}(i_{E}(\vec{E}))$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Such a model (with some additional properties) is called a *premouse*.

Iterations

Let M be a premouse. An iteration on M is a sequence $\langle M_{\alpha}, i_{\alpha,\beta} : \alpha \leq \beta \leq \gamma \rangle$ of premice with (partial) embeddings between them, starting with M, produced by iterating the following operations:

Applying an extender E ∈ M_α to some M_β (β ≤ α) (for our purposes β = α always);

- truncating to an inital segment (but only finitely often);
- taking direct limits (at limit stages).

Iterations

Let M be a premouse. An iteration on M is a sequence $\langle M_{\alpha}, i_{\alpha,\beta} : \alpha \leq \beta \leq \gamma \rangle$ of premice with (partial) embeddings between them, starting with M, produced by iterating the following operations:

- Applying an extender E ∈ M_α to some M_β (β ≤ α) (for our purposes β = α always);
- truncating to an inital segment (but only finitely often);
- taking direct limits (at limit stages).

Lemma (Comparison)

Let M, N be iterable premice (mice) then there exist normal iterations \mathcal{I} on M with last model M^* and \mathcal{J} on N with last model N^* that one of the following holds:

- (i) $M^* \leq N^*$ and \mathcal{I} does not truncate;
- (ii) $N^* \trianglelefteq M^*$ and \mathcal{J} does not truncate.

The core model K is the minimal maximal mouse (not the actual definition!) if such exists. K exists if there is no mouse satisfying $(*)_{\lambda}$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The core model K is the minimal maximal mouse (not the actual definition!) if such exists. K exists if there is no mouse satisfying $(*)_{\lambda}$.

K has the following properties (among others):

•
$$\operatorname{cof}((\alpha^+)^K) \ge \kappa$$
 for all $\alpha \ge \aleph_2$;

if $cof(\alpha) < Card(\alpha)$ but $\alpha \ge \aleph_2$ is regular in K then, in fact, $o^K(\alpha) \ge \nu$ where $cof(\alpha) = \omega \cdot \nu$;

• $K = K^{V[G]}$ for any set generic extension.

Let $\alpha \geq \aleph_2$. Assume $\operatorname{cof}((\alpha^+)^K) < \alpha$. Let $X \prec (H(\theta); \in, \ldots)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $(\alpha^+)^K$. Let $\sigma_X : H_X \simeq X$ and $K_X := \sigma_X^{-1} [K]$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Let $\alpha \geq \aleph_2$. Assume $\operatorname{cof}((\alpha^+)^K) < \alpha$. Let $X \prec (H(\theta); \in, ...)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $(\alpha^+)^K$. Let $\sigma_X : H_X \simeq X$ and $K_X := \sigma_X^{-1"}[K]$. Facts:

In the co-iteration between K and K_X , K_X does not move;

Let $\alpha \geq \aleph_2$. Assume $\operatorname{cof}((\alpha^+)^K) < \alpha$. Let $X \prec (H(\theta); \in, ...)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $(\alpha^+)^K$. Let $\sigma_X : H_X \simeq X$ and $K_X := \sigma_X^{-1} [K]$. Facts:

- In the co-iteration between K and K_X , K_X does not move;
- K must truncate, in fact, $(\operatorname{crit}(\sigma_X)^+)^{K_X} < (\operatorname{crit}(\sigma_X)^+)^{K}$;

Let $\alpha \geq \aleph_2$. Assume $\operatorname{cof}((\alpha^+)^K) < \alpha$. Let $X \prec (H(\theta); \in, ...)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $(\alpha^+)^K$. Let $\sigma_X : H_X \simeq X$ and $K_X := \sigma_X^{-1} [K]$. Facts:

- In the co-iteration between K and K_X , K_X does not move;
- K must truncate, in fact, $(\operatorname{crit}(\sigma_X)^+)^{K_X} < (\operatorname{crit}(\sigma_X)^+)^{K}$;
- let β be the least point in the iteration s.t. the next critical point is $\geq \sigma_X^{-1}(\alpha)$; (if it exists o.w. the last model) let $M := \text{Ult}(M_{\beta}; \sigma_X \upharpoonright K_X || (\sigma_X^{-1}((\alpha^+)^K)))$, then:

Let $\alpha \geq \aleph_2$. Assume $\operatorname{cof}((\alpha^+)^K) < \alpha$. Let $X \prec (H(\theta); \in, ...)$ good (e.g. countably closed) of size $<\alpha$ but cofinal in $(\alpha^+)^K$. Let $\sigma_X : H_X \simeq X$ and $K_X := \sigma_X^{-1} [K]$. Facts:

- In the co-iteration between K and K_X , K_X does not move;
- K must truncate, in fact, $(\operatorname{crit}(\sigma_X)^+)^{K_X} < (\operatorname{crit}(\sigma_X)^+)^K$;
- let β be the least point in the iteration s.t. the next critical point is $\geq \sigma_X^{-1}(\alpha)$; (if it exists o.w. the last model) let $M := \text{Ult}(M_\beta; \sigma_X \upharpoonright K_X || (\sigma_X^{-1}((\alpha^+)^K)))$, then:

- M is a mouse, so $M \in K$,
- $(\alpha^+)^K$ is a cardinal in M,
- *M* defines a surjection from α onto $(\alpha^+)^K$.

The Theorem

Theorem

Assume $2^{\aleph_0} < \aleph_{\omega}$ and that there is no class size mouse of $(*)_{\omega_{\omega}}$. (a) Let $A := \{n < \omega | \exists \alpha : \aleph_n = (\alpha^+)^K \lor (\aleph_n^+)^K < \aleph_{n+1}\}$. Then $\prod_{n \in A} \aleph_n / I_{<\omega}$ carries a tree-like scale that is continuous on $\operatorname{cof}(>\omega)$. (b) Let $B := \{n < \omega | \forall \alpha < \aleph = (\alpha^+)^K < \aleph = (\alpha^+)^K < \aleph = (\alpha^+)^K < N = (\alpha^$

(b) Let $B := \{n < \omega | \forall \alpha < \aleph_n : (\alpha^+)^K < \aleph_n \land (\aleph_n^+) = \aleph_{n+1}\}.$ Then $\prod_{n \in B} \aleph_n / I_{<\omega}$ carries an essentially tree-like scale that is continuous on $cof(>\kappa)$, some $\kappa < \aleph_{\omega}$.

Proof.

■ W.I.o.g. assume
$$\aleph_n = (\kappa_n^+)^K$$
 for $n \in A$. Let $C_n := \{\alpha < \kappa^+ | K | \alpha \prec K | \aleph_n \}$. C_n is a club.

◆□ > < 個 > < E > < E > E の < @</p>

Proof.

- W.l.o.g. assume $\aleph_n = (\kappa_n^+)^K$ for $n \in A$. Let $C_n := \{\alpha < \kappa^+ | K | \alpha \prec K | \aleph_n \}$. C_n is a club.
- For α ∈ C_n let Mⁿ_α be the least level of K for which a (canonical) partial surjection gⁿ_α : κ_n → α is kⁿ_α-definable. (0-definable is just Σ₁-definable.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

- W.I.o.g. assume $\aleph_n = (\kappa_n^+)^K$ for $n \in A$. Let $C_n := \{ \alpha < \kappa^+ | K | \alpha \prec K | \aleph_n \}$. C_n is a club.
- For α ∈ C_n let Mⁿ_α be the least level of K for which a (canonical) partial surjection gⁿ_α : κ_n → α is kⁿ_α-definable. (0-definable is just Σ₁-definable.)
- For $\alpha \in C_m$ there exists at most one $\beta \in C_n$ such that there exists a $(k_{\alpha}^m =)k_{\beta}^n$ -embedding $\sigma_{\beta,\alpha}: M_{\beta}^n \to M_{\alpha}^m$ moving certain parameters correctly. (A 0-embedding is Σ_1 -elementary.)

ション ふゆ く 山 マ チャット しょうくしゃ

Proof.

■ Idea: Let X be good. Then for all $n^* \le n < m \in A$ we have a $k^n_{\chi_X(\aleph_n)}$ -embedding from $M^n_{\chi_X(\aleph_n)}$ into $M^m_{\chi_X(\aleph_m)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

- Idea: Let X be good. Then for all $n^* \le n < m \in A$ we have a $k^n_{\chi_X(\aleph_n)}$ -embedding from $M^n_{\chi_X(\aleph_n)}$ into $M^m_{\chi_X(\aleph_m)}$.
- Let $\langle M_{\alpha}, i_{\alpha,\beta} : \alpha \leq \beta \leq \gamma \rangle$ be the induced iteration on K. Let β_n be the least point in the iteration such that the next point is $\geq \sigma_X^{-1}(\kappa_n)$ (if it exists, o.w. $\beta_n = \gamma$).

ション ふゆ く 山 マ ふ し マ うくの

Proof.

- Idea: Let X be good. Then for all $n^* \le n < m \in A$ we have a $k^n_{\chi_X(\aleph_n)}$ -embedding from $M^n_{\chi_X(\aleph_n)}$ into $M^m_{\chi_X(\aleph_m)}$.
- Let $\langle M_{\alpha}, i_{\alpha,\beta} : \alpha \leq \beta \leq \gamma \rangle$ be the induced iteration on K. Let β_n be the least point in the iteration such that the next point is $\geq \sigma_X^{-1}(\kappa_n)$ (if it exists, o.w. $\beta_n = \gamma$).

ション ふゆ く 山 マ チャット しょうくしゃ

Have then $M_{\chi_X(\aleph_n)}^n = \text{Ult}(M_{\beta_n}; \sigma_X \upharpoonright K_X || \sigma_X^{-1}(\aleph_n))$. Let $\varphi_{m,n} : M_{\chi_X(\aleph_n)}^n \to M_{\chi_X(\aleph_m)}^m, [a, f]_{\sigma_X} \mapsto [a, i_{\beta_n, \beta_m}(f)]_{\sigma_X}.$

Theorem (Gitik)

Let κ be a regular cardinal, and let E be an extender on κ of length κ^{++} . Then there exists a forcing extension V[G] with a sequence $\langle \kappa_n : n < \omega \rangle$ such that $\prod_{n < \omega} \kappa_n^{++}/I_{<\omega}$ does not carry an essentially tree-like continuous scale.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (Gitik)

Let κ be a regular cardinal, and let E be an extender on κ of length κ^{++} . Then there exists a forcing extension V[G] with a sequence $\langle \kappa_n : n < \omega \rangle$ such that $\prod_{n < \omega} \kappa_n^{++} / I_{<\omega}$ does not carry an essentially tree-like continuous scale.

Conjecture: Let M be a model of $(*)_{\lambda}$. Then there exists a forcing extension M[G] with a sequence $\langle \kappa_n : n < \omega \rangle$ such that $\prod_{n < \omega} \kappa_n / I_{<\omega}$ does not carry a tree-like continuous scale.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

Open Questions

Question

What is the consistency strength of the existence of a sequence $\langle \kappa_n : n < \omega \rangle$ consisting of core model successor cardinals such that $\prod_{n < \omega} \kappa_n / I_{<\omega}$ does not carry a continuous tree-like scale?

Question

Is it consistent for there to exist some singular strong limit λ such that for no $\langle \kappa_n : n < \omega \rangle$ cofinal in λ , $\prod_{n < \omega} \kappa_n / I_{<\omega}$ carries a tree-like

continuous scale?

Question

Is it consistent for there to exist some singular strong limit λ and some $\langle \kappa_n : n < \lambda \rangle$ such that $\prod_{n < \omega} \kappa_n / I_{<\omega}$ carries a tree-like continuous scale and true cofinality of the product is λ^{++} ?

- Saharon Shelah: PCF and infinite free subsets in an algebra. Archive for Mathematical Logic, vol 41, Pages 321 – 359.
- [2] Luis Pereira: The PCF conjecture and large cardinals. JSL 73(2), Pages 647 688, 2008.
- [3] James Cummings: Continuous tree-like scales. Central European Journal of Mathematics, vol 8, Pages 314 – 318.
- [4] Moti Gitik: On a question of Pereira. Archive of Mathematical Logic, vol 47, Pages 53 – 64, 2008.
- [5] Dominik Adolf and Omer Ben-Neria: *untitled*. In preparation.

ション ふゆ く 山 マ チャット しょうくしゃ