DIAMOND AND GCH

JAMES CUMMINGS

 κ is regular and uncountable. Jensen introduced the following principle:

 \Diamond_{κ} : there exists a sequence $\langle S_{\alpha} : \alpha < \kappa \rangle$ such that for every $S \subseteq \kappa$, $\{\alpha : S \cap \alpha =$ S_{α} is stationary.

Remark 1: using diamond, you can anticipate all 2^{κ} many subsets of κ in a mere κ steps.

Some historical remarks:

- (1) (Jensen) If \diamondsuit_{ω_1} then there is a Souslin tree.
- (2) (Jensen) If V = L then \diamondsuit_{κ} for all uncountable regular κ .
- (3) If S is bounded then $S_{\alpha} = S$ for many α , so \Diamond_{κ} implies $\kappa^{<\kappa} = \kappa$. In particular \diamondsuit_{ω_1} implies CH.
- (4) (Jensen) Consistently CH plus no Souslin tree, so in particular CH does not imply \diamond .
- (5) (Gregory) If GCH holds then \Diamond_{λ^+} for all regular uncountable λ .
- (6) (Shelah) If GCH holds then \Diamond_{λ^+} for all singular λ .

Recently Shelah proved the optimum result of this latter type: if λ is uncountable and $2^{\lambda} = \lambda^+$, then \diamondsuit_{λ^+} .

Remark 2: An equivalent version of \Diamond_{κ} for functions rather than sets: there is $\langle f_{\alpha} : \alpha < \kappa \rangle$ such that for every $f : \kappa \to \kappa, f \upharpoonright \alpha = f_{\alpha}$ for stationary many α .

Why is it equivalent? If you have the function version just set $S_{\alpha} = \{\beta : f_{\alpha}(\beta) \neq \beta \}$ 0}. For the converse fix a bijection $g: \kappa \simeq \kappa^2$, note that for a club of α we have

 $g \upharpoonright \alpha : \alpha \simeq \alpha^2$, and set $f_{\alpha} = g^{"}S_{\alpha}$ whenever $g \upharpoonright \alpha : \alpha \simeq \alpha^2$ and $g^{"}S_{\alpha}$ is a function. For simplicity we'll prove the following special case of Shelah's result (which has all the main ideas): if $2^{\omega_1} = \omega_2$ then \Diamond_{ω_2} . Let $S = \omega_2 \cap cof(\omega)$: we'll build f_α for $\alpha \in S$ so that every f is guessed on a stationary subset of S.

We start by fixing

- (1) A sequence $\langle f_{\beta} : \beta < \omega_2 \rangle$ such that
 - (a) $dom(f_{\beta}) \leq \beta$ and $rge(f_{\beta}) \subseteq \omega_2$.
 - (b) Every function g with $dom(g) < \omega_2$ and $rge(g) \subseteq \omega_2$ appears as f_β for unboundedly many $\beta < \omega_2$.
- (2) A sequence $\langle g_i : i < \omega_1 \rangle$ such that
 - (a) $g_i: \omega_2 \to \omega_2$.
 - (b) For every $h: \omega_1 \to \omega_2$, there are unboundedly many $\beta < \omega_2$ such that $\forall i \ h(i) = g_i(\beta).$
- (3) For each β a sequence $\langle x_i^{\beta} : i < \omega_1 \rangle$ of countable subsets of such that
 - (a) x_i^{β} increases with *i*.
 - (b) $\beta = \bigcup_i x_i^{\beta}$.

We let $f_{\beta,i}^1 = g_i \circ f_{\beta}$, and note that $dom(f_{\beta,i}^1) = dom(f_{\beta})$. Given $h: \omega_2 \to \omega_2$ and $i < \omega_1$ we define $S^{h,i}$ to be the set of $\beta \in S$ such that (1) x_i^{β} is unbounded in β .

JAMES CUMMINGS

(2) For unboundedly many $\alpha \in x_i^{\beta}$ there is $\bar{\alpha} > \alpha$ such that $\bar{\alpha} \in x_i^{\beta}$ and $h \upharpoonright \alpha = f_{\bar{\alpha},i}^1$.

Intuition: if $\beta \in S^{h,i}$ then we can "assemble" $h \upharpoonright \beta$ using only functions from the fixed countable set $\{f_{\gamma,i}^1 : \gamma \in x_i^\beta\}$ (which is independent of h!)

Key claim 1: there is $i < \omega_1$ such that $S^{h,i}$ is stationary for all h.

Proof: Otherwise we may fix C_i club and h_i so that $C_i \cap S^{h_i,i} = \emptyset$. Now we let $h(\alpha)$ be the least $\beta > \alpha$ such that $\langle h_i(\alpha) : i < \omega_1 \rangle = \langle g_i(\beta) : i < \omega_1 \rangle$, and then $H(\alpha)$ be the least $\gamma > \alpha$ such that $h \upharpoonright \alpha = f_{\gamma}$.

Let D be the club set of β which are closed under H, and find $\beta \in S \cap \bigcap_i C_i \cap D$. Let Z be cofinal in β with order type ω , and find $j < \omega_1$ large enough that $Z \cup H^*Z \subseteq x_j^\beta$. We claim that $\beta \in S^{h_j,j}$, which is a contradiction since also $\beta \in C_j$.

Since $Z \subseteq x_j^{\beta}$, x_j^{β} is cofinal in β . Let $\alpha \in Z$ and let $\bar{\alpha} = H(\alpha)$, so that also $\bar{\alpha} \in x_j^{\beta}$. By definition $h \upharpoonright \alpha = f_{\bar{\alpha}}$, so that for every $\eta < \alpha$ we have

$$f^1_{\bar{\alpha},j}(\eta) = g_j(h(\eta)) = h_j(\eta).$$

So $h_j \upharpoonright \alpha = f_{\bar{\alpha},j}^1$. This shows that $\beta \in S^{h_j,j}$, concluding the proof of key claim 1.

We fix *i* as in key claim 1, and let $f_{\alpha,j}^2 = g_j \circ f_{\alpha,i}^1$ for all *j* and α . For $\beta \in S$ let v_β be the set of pairs $(\alpha, \bar{\alpha})$ such that $\alpha, \bar{\alpha} \in x_i^\beta$ and $dom(f_{\bar{\alpha}}) = \alpha$. Note that this is a countable set.

We now aim to find $w_{\beta} \subseteq v_{\beta}$ and j such that for many β , $\bigcup_{(\alpha,\bar{\alpha})\in w_{\beta}} f_{\bar{\alpha},j}^2$ is a function, and such that these functions form a diamond sequence.

The details: we will choose by recursion (for as long as we can) E_j , h_j for $j < \omega_1$ such that

- (1) The E_j are club subsets of ω_2 decreasing with j, and $E_k = \bigcap_{k < j} E_k$ for k limit.
- (2) The h_j are functions from ω_2 to ω_2 .
- (3) If we define $v_{\beta,j}$ for $\beta \in E_j \cap S$ to be the set of $(\alpha, \bar{\alpha}) \in v_\beta$ such that $h_k \upharpoonright \alpha = f_{\bar{\alpha},k}^2$ for all k < j, then for every $\beta \in E_{j+1} \cap S$ EITHER $\{\alpha : \exists \bar{\alpha} \ (\alpha, \bar{\alpha}) \in v_{\beta,j}\}$ is bounded in β OR $v_{\beta,j+1} \subsetneq v_{\beta,j}$.

To start let $E_0 = \omega_2$. Suppose that we have chosen E_k and h_k for k < j (note that if j is limit then we are forced to define E_j as the intersection of the preceding E_k 's). We compute the sequence $\langle v_{\beta,j} : \beta \in E_j \cap S \rangle$ and then ask the following question: is there a function h and a club $E \subseteq E_j$ such that for every $\beta \in E \cap S$ either $v_{\beta,j}$ is bounded in β or $\{(\alpha, \overline{\alpha}) \in v_{\beta,j} : h \upharpoonright \alpha = f_{\overline{\alpha},j}^2\} \subseteq v_{\beta,j}$? If yes then we choose $h_j = h$ and $E_j = E$. Otherwise we halt and set $w_\beta = v_{\beta,j}$ for $\beta \in E_j \cap S$.

Key claim 2: We halt before ω_1 steps.

Proof: suppose for contradiction that h_j , E_j are defined for all $j < \omega_1$. Let $E_{\infty} = \bigcap_j E_j$, and let $h(\alpha)$ be the least $\beta > \alpha$ such that $\langle h_j(\alpha) \rangle = \langle g_j(\beta) \rangle$. Now recall that $S^{h,i}$ is stationary, and choose $\beta \in E_{\infty} \cap S^{h,i}$. By definition x_i^{β} is unbounded in β and there are unboundedly many $\alpha \in x_i^{\beta}$ such that for some $\bar{\alpha} \in x_i^{\beta}$ we have $h \upharpoonright \alpha = f_{\bar{\alpha},i}^1$

Let $\alpha, \bar{\alpha} \in x_i^{\beta}$ be such that $h \upharpoonright \alpha = f_{\bar{\alpha},i}^1$. Then by definition of h, for every $j < \omega_1$ and every $\eta < \alpha$

$$f_{\bar{\alpha},j}^2(\eta) = g_j(f_{\bar{\alpha},i}^1(\eta)) = g_j(h(\eta)) = h_j(\eta),$$

 $\mathbf{2}$

that is $h_j \upharpoonright \alpha = f_{\bar{\alpha},j}^2$. So $(\alpha, \bar{\alpha}) \in v_j^\beta$ for all $j < \omega_1$. It follows that for all j the set $\{\alpha : \exists \bar{\alpha} \ (\alpha, \bar{\alpha}) \in v_{\beta,j}\}$ is unbounded in β , and since $\beta \in E_{j+1}$ we have $v_{\beta,j+1} \subsetneq v_{\beta,j}$. But this is impossible because v_β is countable, concluding the proof of key claim 2.

Suppose the construction halts at stage j, that is we are unable to make a choice for h_j and E_{j+1} . Recall that we set $w_\beta = v_{\beta,j}$ for $\beta \in E_j \cap S$.

Key claim 3: For every $f: \omega_2 \to \omega_2$ there are stationarily many $\beta \in E_j \cap S$ such that

- (1) $\{\alpha : \exists \bar{\alpha} \ (\alpha, \bar{\alpha}) \in w_{\beta}\}$ is unbounded in β .
- (2) $\bigcup_{(\alpha,\bar{\alpha})\in w_{\beta}} f_{\alpha,j}^2$ is a function with domain β .
- (3) $f \upharpoonright \beta = \bigcup_{(\alpha,\bar{\alpha}) \in w_{\beta}} f_{\alpha,j}^2$.

Proof: Suppose not and fix a club set $E \subseteq E_j$ such that for every $\beta \in E \cap S$ one of the statements above is false. We claim that we could have set $h_j = f$ and $E_{j+1} = E$, contradicting the choice of j as the stage where the construction halted. Note that if we set $h_j = f$ then for every $\beta \in E_{j+1} \cap S$ we have $v_{\beta,j} = w_\beta$, $v_{\beta,j+1} = \{(\alpha, \overline{\alpha}) \in w_\beta : f \upharpoonright \alpha = f_{\overline{\alpha},j}^2\}.$

- For every $\beta \in E_{j+1} \cap S$ one of the following occurs:
- (1) $\{\alpha : \exists \bar{\alpha} \ (\alpha, \bar{\alpha}) \in v_{\beta, i}\}$ is bounded in β .
- (2) $\{\alpha : \exists \bar{\alpha} \ (\alpha, \bar{\alpha}) \in v_{\beta,j}\}$ is unbounded in β , and there are $(\alpha_i, \bar{\alpha}_i) \in v_{\beta,j}$ for i = 0, 1 such that the functions $f^2_{\bar{\alpha}_i,j}$ are incompatible: in this case one of the pairs $(\alpha_i, \bar{\alpha}_i)$ is not in $v_{\beta,j+1}$ because $f \upharpoonright \beta$ can't agree with both the functions $f^2_{\bar{\alpha}_i,j}$, so that $v_{\beta,j+1} \subsetneq v_{\beta,j}$.
- (3) $\{\alpha : \exists \bar{\alpha} \ (\alpha, \bar{\alpha}) \in v_{\beta,j}\}$ is unbounded in β , and $\bigcup_{(\alpha, \bar{\alpha}) \in v_{\beta,j}} f_{\alpha,j}^2$ is a function with domain β which is not equal to $f \upharpoonright \beta$: in this case there is $(\alpha.\bar{\alpha}) \in v_{\beta,j}$ such that $f \upharpoonright \alpha \neq f_{\bar{\alpha},j}^2$, and so $(\alpha, \bar{\alpha}) \notin v_{j+1}^\beta$ and again $v_{\beta,j+1} \subsetneq v_{\beta,j}$.

It follows that we could continue the construction, contradicting the choice of j. Conclusion: If we define $f_{\beta}^3 = \bigcup_{(\alpha,\bar{\alpha})\in w_{\beta}} f_{\alpha,j}^2$ whenever this defines a function with domain β , then we have a diamond sequence.